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Abstract 
 

This paper reports tests of functional measurement theory for multiplicative models of informa-
tion integration, and shows that ratio-scale measures of mental magnitude can be computed. 

 
 

Functional measurement is a theory of measurement of mental magnitude and of quantitative infor-
mation involved in the generation of mental magnitude (Anderson 1981 1982 1996 2001). For ex-
ample, when one lifts an object while looking at it, the heaviness of the object results from the inte-
gration of muscular quantitative information about object weight and visual quantitative informa-
tion about object size (Anderson 1970). Functional measurement provides measures such as those 
of this heaviness and of this muscular and visual quantitative information. 

 

 
                                                         Variable Y 

 y1
 y2

 ... yj
 ... yJ

 

x1
 R11 R12 ... R1j  ... R1J 

x2
 R21 R22 ... R2j  ... R2J 

... ... ... ... ... ... ... 

xi
 Ri 1 Ri 2 ... Ri j  ... RiJ 

... ... ... ... ... ... ... 

 
 
 
 
                   
              Variable X 

xI
 RI 1 RI 2 ... RI j  ... RIJ 

 

Table 1. Representation of a factorial table reporting mean self-estimates, Rij, of mental magnitude pro-
duced by the ordered values xi and yj of two independent variables X and Y, respectively, with i the integers 
from 1 to I and j the integers from 1 to J. 

 
 

To obtain measures of quantitative information involved in the generation of mental magnitude, the 
joint use of a factorial experimental design and of a method of self-estimation involving a linear re-
sponse function is required. In the simplest factorial design, I values xi of some variable X increas-
ing with i, and J values yj of some variable Y increasing with j, are predefined, with i and j being in-
tegers in the intervals (1, I) and (1, J), respectively. Experimental stimuli are constructed each with 
a different combination of xi and yj. For example, stimuli could be cylinders with different combina-
tions of volume and weight. In each stimulus, subjects self-estimate the magnitude ρij of some men-
tal attribute produced by xi and yj. For example, subjects could rate the magnitude ρij of the heavi-
ness of a lifted cylinder. Table 1 represents a factorial table reporting mean self-estimates Rij of ρij. 

 
For sake of simplicity, here we consider only the cases when the number of observations in the cells 
of the factorial table is as large as to make standard errors of means negligible.  

 
Functional measurement assumes that the response function is 

 

                                                                   ijij  c  c  R ρ10 +=                                                                [1] 
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with c0 and c1 unknown constants. Thus, Rij is assumed to be a measure of ρij on an interval scale. 
 
At a neural level, let the quantitative information about xi and yj be ξi and ψj, respectively. This in-
formation must be integrated to produce ρij. One common rule of integration is represented by the 
multiplicative model 

 

                                                                       jiij    ψξρ = .                                                                  [2] 
 

The response function and the multiplicative model jointly determine the functional measures of ξi 
and of ψj. These measures are derived as follows (Anderson 1981 1982). 

 
The means of Rij for each Row i and for each Column j of Table 1 are 
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Equations 1 and 2 imply that 
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Since each ξi of a given row is the same for each column, and each ψj of a given column is the same 
for each row, these means are 

 

                                                                    ii  c'  c  R ξ0 +=                                                                 [3] 
 

and 
 

                                                                   jj  c"  c  R ψ0 +=                                                               [4] 
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1 ξ constants specific of the factorial design being used. 

 
Thus, iR  and jR  are interval-scale measures of ξi and ψj, respectively. 

 
 

Tests 
 

By putting Equations 1−4 together and rearranging one obtains the linear relations 
 

                                         iij R k  c k  c  R +−= 00   with  )( 0
1 c R 
c" c'

c 
  k j −

 
=                                       [5] 

 

and 
 

                                        jij R k'  c k'  c  R +−= 00   with  .)( 0
1  c R 
c" c'

c 
  k' i −

 
=                                     [6] 

 
Several empirical tests have been made which confirm different predictions from Equations 5 and 6 
(Anderson, 1981 1982 1991 1996). The following are additional tests of these equations. 
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Test 1. If the intercept c0 – k c0 in Equation 5 increases with jR  then c0 is negative, and if this inter-
cept decreases as jR  increases then c0 is positive. Equation 6 involves a similar test. 

 
Test 2. Functional measurement theory for multiplicative models provides ratio-scale measures of ξi 
and ψj (Anderson, 1982, pp. 82-83). These measures may be obtained as follows. For each Row i 
and each Column j consider, respectively, the differences with minimum relative error 

 

                                                                      
iJii RR  D −= 1                                                      [7] 

 

and 
 

                                                                     
. RR  D Ijjj −= 1                                                    [8] 

 
By putting Equations 1, 2, and 7 together and rearranging one obtains 

 

                                                                         ii  u  D ξ=                                                                     [9] 
 

and by putting Equations 1, 2, and 8 together and rearranging one obtains 
 

                                                                        jj  v  D ψ=                                                                  [10] 

 
with J c  u ψψ11 −=  and I c   v ξξ11 −= constants specific of the factorial design being used. 

 
Thus, Di and Dj are functional ratio-scale measures of ξi of ψj, respectively. 

 
Finally, by putting Equations 1, 2, 9, and 10 together and rearranging one obtains  

 

                                                                .1
0  D D

v u

c 
  c  R jiij

 
+=                                                         [11] 

 
By assumption c0 is a constant. Accordingly, Equation 11 predicts that c0 is invariant with Dj when 
Rij is plotted as a function of Di, and is invariant with Di when Rij is plotted as a function of Dj. 

 
 

Tests 1 and 2 applied on Anderson and Butzin’s results 
 

Anderson and Butzin (1974) tested empirically the model that the performance attributed by a sub-
ject to an individual is equal to the product of motivation and ability attributed by the subject to the 
same individual. On a 20-cm graphic bar, labeled High and Low at the ends, twenty subjects rated 
the performance of applicants to graduate school. A 4 (motivation) × 4 (ability) factorial design was 
used. Each level of motivation or of ability was stated to the subject as either low (L), slightly be-
low average (M−−−−), slightly above average (M++++), or high (H). Subjects rated performance of appli-
cants for each combination of levels of motivation and ability. 

 
Table 2 reports the mean ratings of performance, Rij, derived from Anderson and Butzin’s (1974) 
Figure 2. The interval-scale measuresiR  and jR , and the ratio-scale measures Di and Dj, calculated 
on these mean ratings are also reported. In Figure 1, Rij is plotted as a function of the interval-scale 
measure iR  (left) and of the ratio-scale measure Di (right) of motivation, with the parameters being 
the interval-scale measure jR  and the ratio-scale measure Dj of ability, respectively. For each pa-
rameter value, a straight line obtained by least squares fitting is depicted. 
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            Ability   
 y1 

(L)  
y2 
(M −−−−) 

y3 
(M ++++) 

y4 
(H) 

 
iR  

 
iD  

 x1 (L)  3.3 5.0 7.2 9.0 6.1 5.7 

 x2 (M
−−−−) 4.5 7.4 9.4 11.3 8.3 6.6 

 x3 (M
++++) 7.6 9.9 12.4 14.5 11.1 6.9 

 
 
 
 
 
Motivation  

 x4 (H) 9.0 11.6 14.7 17.5 

 

13.2 8.5 

 
      jR  6.1 8.5 10.9 13.1    

      jD  5.7 6.6 7.5 8.5    

 

Table 2. Mean ratings of attributed performance obtained by Anderson and Butzin (1974, Figure 2) for each 
combination of low (H), slightly below average (M−−−−), slightly above average (M++++), and high (H) levels of at-
tributed motivation and of attributed ability. 
 
 

In Figure 1, in the left diagram, the intercept of fitted lines increases with jR . Consequently, Test 1 
predicts that c0 is negative. Test 2 predicts that c0 is invariant with Dj. The results in the right dia-
gram show that these predictions are confirmed: the intercept c0 of the fitted lines is negative and 
essentially invariant with Dj, in agreement with the assumption of Equation 1 that c0 is a constant. 
When Rij is plotted as a function of jR  and of Dj, c0 is negative and essentially invariant with Di. 
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Figure 1. Mean ratings of performance (Rij, reported in Table 2) as a function of an interval-scale measure 

iR  (left) and of a ratio-scale measure Di (right) of motivation. The parameters are the interval-scale meas-
ures jR and ratio-scale measures Dj of ability, respectively. 
 
 

One important feature of functional measurement theory is that it allows for ratio-scale measure-
ment of mental magnitude. In fact, Equation 1 may be rewritten as 

 
                                                                .ρ10 ijij  c  c R =−  

 
The quantity Rij − c0 is a ratio-scale measure of ρij. Since we determine Rij empirically and estimate 
c0 by some fitting procedure, we can obtain ratio-scale measures of mental magnitude. 
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Cases when c0 = 0 
 

The constant c0 in Equation 1 depends on the specific factorial design and on the specific procedure 
for the method of self-estimation being used. The design and the rating procedure used by Anderson 
and Butzin (1974) produced a c0 ≠ 0. It may be that the design and the self-estimation procedure 
produce a c0 = 0. In this case Equation 1 reduces to 

 

.ρ1 ijij  c  R =  
 

That is, in this case, subject’s self-estimates are direct ratio-scale measure of ρij. 
 
When c0 = 0, each of Equations 5 and 6 reduces to  
 

                                                                   jiij R R 
c" c'

c 
  R

 
= 1                                                             [12] 

 

and Equation 11 reduces to 
 

                                                                   .1  D D
v u

c 
  R jiij

 
=                                                             [13] 

 
Thus, when c0 = 0, the factorial graphs implied by Equations 12 and 13 are each a fan of straight 
lines with a common origin equal to c0 = 0. 

 
Shanteau and Anderson (1972) used a factorial design and a rating procedure that produced a c0 = 0. 
These authors tested the model that, in making a decision, the judged worth of an added piece of 
probabilistic information is equal to the product of this added piece of probabilistic information and 
the amount of prior probabilistic information relevant for the decision. A 4 (added information) × 5 
(prior information) factorial design was used. The levels of added information were the probabili-
ties 1/6, 3/6, 5/6, and 6/6. The levels of prior information were the probabilities 0.5, 0.6, 0.7, 0.8, 
and 0.9. On a 50-cm graphic bar, thirty-two subjects rated worth of added information for each 
combination of levels of added and prior information (each single rating was multiplied by 2). 

 
          Prior Information            

 y1 
(0.9) 

y2 
(0.8) 

y3 
(0.7) 

y4 
(0.6) 

y5 
(0.5) 

 
iR  

 
iD  

 x1 (1/6) 3.6 5.9 8.8 9.3 11.1 7.7 7.5 

 x2 (3/6) 11.1 17.9 22.3 27.6 33.6 22.5 22.5 

 x3 (5/6) 18.5 28.1 36.0 45.0 54.2 36.4 35.7 

 
 
 
 
Added  
Information  

 x4 (6/6) 23.3 33.0 42.8 52.7 65.1 

 

43.4 41.8 
 
        jR  14.1 21.2 27.5 33.7 41.0    

        jD  19.7 27.1 34.0 43.4 54.0    

 
Table 3. Mean ratings of worth of added probabilistic information obtained by Shanteau and Anderson 
(1972, Figures 1 and 3) for each combination of levels of added and prior probabilistic information. This in-
formation is expressed in terms of the probabilities reported within parentheses. 
 
 

Table 3 reports mean ratings Rij of worth of added information obtained by Shanteau and Anderson 
(1972, Figures 1 and 3) excluding the ratings of 10 discrepant subjects. It also reports the interval-
scale measuresiR  and jR , and the ratio-scale measures Di and Dj, calculated on these mean ratings. 
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Figure 2. Mean ratings of worth of added information (Rij, reported in Table 3) as a function of an interval-
scale measure iR  (left) and of a ratio-scale measure Di (right) of added information. The parameters are the 
interval-scale measures jR and ratio-scale measures Dj of prior information, respectively. 

 
 

In Figure 2, Rij is plotted as a function of the interval-scale measure iR  (left) and of the ratio-scale 
measure Di (right) of added information. The parameters are the interval-scale measure jR  and the 
ratio-scale measure Dj of prior information, respectively. For each parameter value, a straight line 
obtained by least squares fitting is depicted. 
 
In Figure 2, the intercept of fitted lines in the left diagram is essentially c0 = 0. Accordingly, also 
the intercept of fitted lines in the right diagram is essentially c0 = 0. Similar results are obtained 
when Rij is plotted of a function of jR  and of Dj. 
 
In conclusion, the present tests confirm functional measurement theory for multiplicative models. 
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